Experiment and simulation of laminar and turbulent ferrofluid pipe flow in an oscillating magnetic field.

نویسندگان

  • Kristopher R Schumacher
  • Inga Sellien
  • G Stuart Knoke
  • Tahir Cader
  • Bruce A Finlayson
چکیده

Laminar and turbulent pipe flow of a ferrofluid with an imposed linearly polarized, oscillating, magnetic field is examined here. Experimental results show a fractional pressure drop dependence on flow rate, magnetic field strength, and oscillation frequency. Calculations are presented, which show that ferrofluid theory can explain the flow phenomena in laminar and turbulent pipe flow. The model requires an initial fit of key parameters but then shows predictive capability in both laminar and turbulent flow. Simulation results are found to be essentially independent of the spin boundary condition due to an approximation of spin viscosity that is very small. A low Reynolds number k-epsilon model is used to model the turbulent pipe flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Achievements in Fe3O4 Nanofluid Fully Developed Forced Convection Heat Transfer under the Effect of a Magnetic Field: An Experimental Study

Fe3O4 nanofluid fully developed forced convection inside a copper tube is empirically investigated under the effect of a magnetic field. All of the investigations are performed under laminar flow regime (670≤Re≤1700) and thermal boundary conditions of the tube with uniform thermal flux. The tube is under the effect of a magnetic field in certain points. This research aims to study the effect of...

متن کامل

Numerical simulation of nanofluid flow over diamond-shaped elements in tandem in laminar and turbulent flow

In this paper, the Al2O3-water nanofluid flow in laminar and turbulent flows inside tubes fitted with diamond-shaped turbulators is numerically modeled. The nanofluid flow is modeled by employing a two-phase mixture method and applying the constant heat flux boundary condition at tube walls. In the results, the effects of different parameters such as the geometry of turbulators, volume fraction...

متن کامل

Aerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy

The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...

متن کامل

Laminar and Turbulent Aero Heating Predictions over Blunt Body in Hypersonic Flow

In the present work, an engineering method is developed to predict laminar and turbulent heating-rate solutions for blunt reentry spacecraft at hypersonic conditions. The calculation of aerodynamic heating around blunt bodies requires alternative solution of inviscid flow field around the hypersonic bodies. In this paper, the procedure is of an inverse nature, that is, a shock wave is assumed a...

متن کامل

Flow simulation of gallium in a cylindrical annulus in the presence of a magnetic field for improving the casting process

Free convection flow in an enclosure filled with a congealing melt leads to the product with a nonuniform structure involving large grains. The convective flows are decreased by applying an appropriate magnetic field, obtaining uniform and small grain structures. In this work, using the finite volume method, we investigated the application of a magnetic field to the convective heat transfer and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003